
CROSSTALK The Journal of Defense Software Engineering 19May 1998

What Is the Difference Between
an Inspection and a Peer
Review?
Within the programming community,
the term peer review can refer to one of
many different types of reviews. Some
are consistent, rigorous, and have associ-
ated data, but more often they are infor-
mal, their effectiveness is highly depen-
dent on the people involved, and they
rarely have associated data. To eliminate
misunderstandings, this article will use
the term inspection to refer to consistent
and rigorous “peer reviews” that have
associated data.

What Are Software
Inspections?
An inspection is a review of a work
product, led by a moderator who is not
the producer, that seeks and records
defects in that work product using stan-
dardized checklists and techniques. The
inspection process initiates rework as
necessary, initiates re-review, passes the
work product based on exit criteria, and
adds to the base of historical data.

What Is Needed to Get Good
Data for Analysis?
As with any measurement, the data
must be consistent and accurate or you
will be comparing apples and oranges;
however, this does not mean the data
has to be precise. Typically, organiza-
tions at lower levels of process maturity
cannot be as precise as organizations at
higher maturity levels. Do not let this
stop you from using the data. It is more
important to understand the relation-
ships and be in the right order of mag-
nitude when you start to use the data
than to focus on getting to the nth digit

to the right of the decimal point.
Merely focus on consistent data, which
requires a consistent process, and accu-
rate data, which requires understanding
some common definitions.

Consistent processes require a defini-
tion of both the artifacts to be inspected
and of the process to create them. This
consistent process ensures that the in-
spected work products are similar. Most
organizations evolve to rather than start
at this point. Criteria for work products,
including coding standards, design stan-
dards, guidelines, and templates, can
help ensure that the various artifacts are
similar, regardless of which person in the
organization worked on the artifact.

The need for different people to
review each other’s artifacts during in-
spections helps ensure that these criteria
and enablers for consistency evolve,
especially with respect to design and
coding standards that improve consis-
tency and readability. This also requires
that the inspection process be consistent,
which may be the easiest aspect for
many organizations since it is a “single”
process. Some of the key aspects are
training, project-specific checklists, crite-
ria for reinspection, data definitions,
scenarios, establishing project-specific
inspection rates, and data-capture
mechanisms.

Accurate data requires that some
primary data elements be defined and
commonly understood, especially the
definitions of major defects, size, and
time. Even after these elements are de-
fined, people will still need to make
value judgments to record data. These
judgements are not likely to produce
consistent, useful data until there is a
common understanding of how the data

will be analyzed and used. Most organi-
zations have difficulty getting consensus
on what a major defect is until people
realize what trade-offs will be made
based on the reported data.

If I Have a Consistent
Inspection Process and Good
Data, How Can I Start to
Forecast the Number of Defects
Test Needs to Find?
The following example illustrates how
this could be done. If you have done
some code inspections, the data might
look as follows:
• Product contains 10,000 lines of

code (LOC).
• Two thousand LOC were inspected.
• Fifty major defects were found in the

inspections.
After examining the inspection rates,
you determined that they were all rea-
sonable and that the inspections ap-
peared to be consistent. Although there
is not one set of numbers applicable to
every project, some relationships appear
to be consistent across many different
software organizations. For example,
groups that are starting to do consistent
inspections typically discover about 50
percent of defects present in the prod-
uct. Rarely do they start out finding as
many as 60 percent or as few as 40
percent. With this industry norm and
the project-specific data, you can
project the following:
• Fifty defects in 2,000 LOC is a de-

fect density of 25 defects per thou-
sand LOC (KLOC).

• Assuming 50 percent inspection
effectiveness, the product defect
density is 50 defects per KLOC.

Using Inspection Data to Forecast Test Defects
JJJJJohn ohn ohn ohn ohn TTTTT. H. H. H. H. Hararararardingdingdingdingding

SoftwarSoftwarSoftwarSoftwarSoftware e e e e TTTTTechnologechnologechnologechnologechnology y y y y TTTTTrrrrransitionansitionansitionansitionansition

Some organizations have applied software inspections well but may not be using the data to improve the
inspection process and to make business trade-offs based on the inspection data. This article describes
how to use inspection data from code inspections to forecast the number of defects that remain in the
product and how to forecast the number of defects that need to be removed during each test activity.

Software Engineering Technology

20 CROSSTALK The Journal of Defense Software Engineering May 1998

• The product contains 50 defects per
KLOC x 10 KLOC, or 500 defects.

• Fifty defects were removed during
the inspections, so there are 450
defects remaining.
You now have a quantifiable target

for the number of defects that should be
found in test. There are, however, some
additional calculations to perform. Since
inspections on most projects are initially
between 40 percent and 60 percent
effective, you can redo the calculations
for the 50 percent effectiveness for both
of these limits to show a range of defects
for each test stage, then expect the actual
number to be somewhere in between
(see Figure 1).

FFFFFor the 40 peror the 40 peror the 40 peror the 40 peror the 40 percent calculation:cent calculation:cent calculation:cent calculation:cent calculation:
• Inspection defect density is 25 major

defects per KLOC.
• Product defect density is 62.5 defects

per KLOC (25/.4).
• There are 570 major defects remain-

ing (10 KLOC x 62 defects per
KLOC = 620 defects minus 50).
FFFFFor the 60 peror the 60 peror the 60 peror the 60 peror the 60 percent calculation:cent calculation:cent calculation:cent calculation:cent calculation:

• Inspection defect density is 25 major
defects per KLOC.

• Product defect density is 41.6 defects
per KLOC (25/.6).

• There are 370 major defects remain-
ing (10 KLOC x 42 defects per
KLOC = 420 defects minus 50).

Now, when the test defect data comes in,
you will better understand what ques-
tions need to be asked.

Since it is nearly always more cost-
effective to find defects in the early test-
ing activities, you probably want to find

the largest number of defects in the first
test stage and less in each subsequent
testing stage. There are any number of
techniques to do this, including various
deprecation algorithms. You could also
just do it manually, such as was done for
Figure 1, just by drawing a straight line.
As you are doing this, it is OK to round
up or down—this is “blackboard” math-
ematics.

If there are roughly 450 defects re-
maining, you can decide how to remove
them by comparing the time and cost to
remove them using inspections with the
time and cost to remove them using
testing. Typically, inspections will be
much more cost-effective. Therefore,
you might decide to perform more in-
spections for the other 80 percent of the
product that has not yet been inspected
to reduce the number of defects going
into test. If you choose to go directly to
test, you could estimate how many de-
fects you need to find during each test
activity (see Figure 1).

Inspection Data from Additions
and Modifications
If you are adding or modifying functions
in an existing product, you will need to
gather some additional data. When you
inspect changes, you will typically have
to examine some of the unchanged code
to understand how the changed code
works. This analysis will require that you
count both the total LOC inspected and
the new or modified LOC inspected.
The major defects will also need to be
collected at the same level of granularity,
which helps you understand both the
LOC and the defects associated with the
added or modified functions. The ex-
ample in this article assumes that the
LOC and major defects are both associ-
ated exclusively with the count of new
and changed lines of code.

Defect Density Considerations
There is one additional calculation you
should consider. What if the code that
was inspected is from the least defect-
dense parts of the product? What if it is
from the most defect-dense parts of the
product? How many of your products
have a constant defect density across all
parts of the product? You should try to
understand if the inspection data repre-
sents a sample of the product with the
same distribution of defect density as the
entire product. If you have complete
data regarding customer, inspection, and
test defects, this can be calculated easily.
If you do not have this data you may
need to do some additional “sampling”
inspections to determine which parts of
the product are high and which are low
with respect to defect density.

If there is no defect density informa-
tion available, a simple approach is to
divide the product into low and high
defect-dense areas based on asking the
programmers in which category each file
or module belongs. These “sampling”
inspections also provide you with the
defect density values. Then you could re-
do each of the calculations (40 percent,
50 percent, 60 percent), and instead of
assuming a constant defect density, you
could apportion the product into differ-
ent defect densities and calculate the
number of defects in each different por-
tion of the product. Table 1 illustrates
how this could be done at 50 percent
effectiveness. The total defects remain-
ing is 410 (+ 280 from low density +
180 from high density - 50 found dur-
ing inspections). Please note that if you
have a significant amount of defect den-
sity data, you can break your product
into 10 decile ranges for this calculation.

The Bottom Line
When you first start to do this type of
analysis, you may feel a little uncomfort-
able using inexact numbers. You need to
ask yourself whether you are better off

Figure 1. Estimating remaining defects.

Defect Density GroupDefect Density GroupDefect Density GroupDefect Density GroupDefect Density Group Lines of CodeLines of CodeLines of CodeLines of CodeLines of Code Defects per KLDefects per KLDefects per KLDefects per KLDefects per KLOC (from inspections)OC (from inspections)OC (from inspections)OC (from inspections)OC (from inspections) Defects per KLDefects per KLDefects per KLDefects per KLDefects per KLOC (for group)OC (for group)OC (for group)OC (for group)OC (for group) TTTTTotal Defectsotal Defectsotal Defectsotal Defectsotal Defects
Low 7,000 20 40 280 (7 KLOC x 40 defects per KLOC)
High 3,000 30 60 180 (3 KLOC x 60 defects per KLOC)
TTTTTotalotalotalotalotal 10,00010,00010,00010,00010,000 5050505050 100100100100100 460460460460460

Table 1. Defects apportioned by low and high density, assuming 50 percent effectiveness.

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 21May 1998

trying to show business value with these
rough numbers. I believe most execu-
tives would prefer to use inexact data
and try to refine it over time. Software
inspections are valuable, but they take
time; it is important to maximize the
business value your organization can
achieve from them.

How Do I Optimize the Time
Spent on Inspections?
For most software development projects,
the single largest cost factor is labor. If
doing inspections takes time, optimizing
the time spent on inspections means
getting the most impact from each in-
spection by finding the most defects per
unit of time expended. Although this
may appear obvious, many organizations
are not doing this.

Another aspect is to focus the inspec-
tion process on finding the most signifi-
cant product defects. “Significant”
would have to be defined by members of
the project to include cost to fix, critical
functions, or other similar attributes.
Analysis of the defect data from inspec-
tions, test, and customer-discovered
defects can help effectively focus the
inspection effort. This is done by under-
standing and analyzing the types and
characteristics of these defects and then
modifying the inspection process, e.g.,
updating checklists, additions, or modi-
fications to scenarios. Inspection data
can also help determine the optimum
planning rates for the inspections, pro-
vide insights into areas for process im-
provement, and help to build defect
removal models.

Additional Elements for
Successful Inspections

Champions
As people try to implement any new
technology, they need a focal point in
the organization who can help them
tailor the new technology to meet their
project-specific needs. This person also
ensures that commonly occurring prob-
lems are solved in a consistent manner.
The champion may also have to keep the
organization focused on the new tech-
nology to keep it “alive” until it is a
permanent part of the infrastructure.

Moderators
Skilled moderators are key to ensuring
consistent control and focus across dif-
ferent inspections. They must be able to
manage their peers and keep the discus-
sions focused on finding defects.

Metrics Policy
Because the goal of inspections is to find
defects, then to analyze the defect data,
there is a need to “decriminalize” defects.
A metrics policy statement may help
accomplish this.

Time
Given the time required to perform
truly effective inspections, the time and
resources must be planned, or the in-
spections are unlikely to happen. You
must also be selective in what you in-
spect so that you focus your efforts on
the areas with the highest potential
payback.

Data Analysis and Feedback
If people think data are being collected
but not used, you may get “garbage in”
data. People will do a better job captur-
ing and recording data if they know how
the data will be used and how it will
impact them. Data recording often re-
quires some degree of interpretation, and
the associated value judgements will be
much more consistent and accurate if
the people doing the data gathering are
closely involved with the analysis and its
resulting decisions.

Some Basic Analysis Concepts
Although this article is not long enough
to fully elaborate on the analysis con-
cepts, a few aspects should be high-
lighted:

Consistent Inspections and
Consistent Data
This is critical if the data are to be used
to help make decisions. Consistent pro-
cesses and data are key to having consis-
tent inspections.

Questions
The key to data analysis is to help people
on the project understand what ques-
tions they need to ask. In many cases,
the data will not tell you what to do, but

rather where you need to probe for more
information.

Accuracy vs. Precision
Many people with technical back-
grounds are uncomfortable using impre-
cise data. Accuracy means the data truly
represent what you believe they repre-
sent. The focus on accuracy and not on
precision should be publicly discussed so
that everyone understands the objective.

Timely Feedback
Analysis and decisions need to be made
during the project—do not wait until
the end of the project, when it is too late
to make decisions that can impact the
project. When an inspection effort is
first undertaken, the results should be
quantified and presented publicly while
the project is still in progress.

Feedback and “Feedforward”
Most people are familiar with feedback,
which is typically how lessons learned
are captured for application to future
projects. Feedforward is the use of data
from an early process activity to adjust
how the work is done in subsequent
process activities on the same project.
For example, if design inspections dis-
cover that a new or modified function
is more defect dense than the other
functions in that release, more emphasis
can be placed on the defect-dense func-
tion during code inspections and test.

Ratios
This is similar to the way financial ana-
lysts look at business data. They do not
look at any single number to determine
a company’s financial health, but instead
look at a large set of numbers. More
important, they examine the ratios. For
inspections, the following key ratios
should be examined.
• UUUUUnits of siznits of siznits of siznits of siznits of size per hour of inspection.e per hour of inspection.e per hour of inspection.e per hour of inspection.e per hour of inspection.

This could be pages, LOC, or dia-
grams per hour, or whatever is appro-
priate for the situation. These rates
should be examined to determine if
they are reasonable for the type of
material being inspected. This data
can also be used in subsequent analy-
sis, but only if it is accurate and
reasonable. I have seen organizational

Using Inspection Data to Forecast Test Defects

22 CROSSTALK The Journal of Defense Software Engineering May 1998

data that suggest inspections were
held at rates much too fast for opti-
mum efficiency, sometimes ap-
proaching 1,000 LOC per hour. In
some cases, the inspectors are just
recording the total size of the mate-
rial, not the amount of material
inspected. Rates need to make sense,
which requires consistent ways to
count both the time and the size. You
can use standard reading rates to
determine if the rates observed are
reasonable.

• DDDDDefect densityefect densityefect densityefect densityefect density..... This could be major
defects per page, per KLOC, or
whatever is appropriate. For organi-
zations just starting to do code in-
spections, defects per KLOC is usu-
ally appropriate. As organizations
reach improved quality levels, some
are starting to measure defect density
per million LOC. If LOC is the
measure, the data should exclude
comments or anything that would
not change the compiler-generated
object code. Defect density can be
considered the “yield” from inspec-
tions. Since finding defects is the
goal, finding more of them should be
an objective. Defect density informa-
tion can help organizations deter-
mine where to inspect.

• HHHHHours per major defect.ours per major defect.ours per major defect.ours per major defect.ours per major defect. Since labor
is the largest cost factor for most
software projects, measure the hours
it takes to find and fix problems—
this figure will be more meaningful
to the workers and managers. If you
know the hours, you can apply labor
rates to arrive at dollars. The ratio
would be the sum of all hours ex-
pended for the inspection divided
by major defects. Typically, groups
starting out will find major defects
at a rate between two and four
hours per major defect. That rate
may go much lower, especially for
code inspections.

• MMMMMajor defects to minor defects.ajor defects to minor defects.ajor defects to minor defects.ajor defects to minor defects.ajor defects to minor defects. This
ratio can help you better understand
if the focus of the inspections is on
major or minor problems. It may
also highlight recording problems.

Basic Analysis Techniques to
Optimize the Time Spent During
Inspections
Of all the techniques available, scatter
charts are probably the easiest to use and
may provide the most useful informa-
tion. The key is to keep things as simple
as possible and not look for complex
relationships. Because inspection data
represent an intellectual activity and not
a mechanical operation, the data will
have a higher degree of variance than
typical factory data.

Avoid overly sophisticated tools.
Many textbooks suggest that linear
regression techniques require high cor-
relation coefficients if a relationship
exists between the two variables; how-
ever, you may find that for inspections
and other software-related data, the
coefficients may be lower than what the
statistical books recommend. Does this
mean you should not use the data and
the relationships? No, it means you
need to be careful. The common rela-
tionships that appear in most projects
are discussed below. Consider starting
to use scatter charts at a project level
where the data represent a somewhat
consistent entity. Consider starting to
analyze the following:
• Major defects per KLOC vs. LOC

per hour (do one for inspection time
and another for preparation time).

• Hours per major defect vs. LOC per
hour (for inspection).

• Size of material inspected vs. hours
per defect.

• Size of material inspected vs. defects
per KLOC.

Defect Removal Models
Once you have optimized the inspection
process, consider developing a defect
removal model to help with planning,
tracking, and identifying areas for soft-
ware process improvement. A defect
removal model will allow you to under-
stand the process capability for defect
removal during each process stage.

Won’t Analyzing the Data Only
Take More Time?
You could just fix the defects found
during inspections and not record data,
but there are many important uses for

inspection data, many of which are ex-
plained throughout this article. Not the
least of these uses is to maintain manage-
ment support for inspections. Look at
how much time you may be investing in
the inspections alone:
• The typical rate for code inspection

is 125 LOC per hour.
• The typical number of inspectors is

four.
• Preparation time ideally equals in-

spection time.
Although these values may make

inspection appear more time-consuming
than expected, data from many different
types of organizations show these values
fall into acceptable ranges. The key is for
each project team to identify the opti-
mum rates for its project. This means
that if four people inspect 1,000 LOC at
the above rate (4 x (1,000/125)), it will
take 32 hours for inspection and another
32 for preparation, which is 64 hours or
approximately 1.5 people weeks. This is
not a trivial investment, especially if a
significant percentage of the artifacts for
a software development project are to be
inspected.

When you look at these numbers,
you may be ready to cancel your inspec-
tion program, but wait—the cost of
removing defects through inspections
needs to be compared with the cost of
removing the same defects in test or
having to fix them when they are found
by customers. Many articles have shown
that organizations that analyze their data
can find and fix defects much more
cheaply with inspections than during
subsequent process activities. Many
organizations have shown that they can
find and fix the average defect in two to
four person hours or less using inspec-
tions, which is typically much faster than
most testing processes. Although your
numbers may not be the same, you will
not know unless you analyze your data.

It should only take a couple of days
to do this analysis, which is well worth
the time for the improvements that can
be effected based on this analysis—
especially given the amount of time
spent on inspections. And the bottom
line is managers and executives are un-
likely to continue spending money on

see HARDING, page 24

Software Engineering Technology

24 CROSSTALK The Journal of Defense Software Engineering May 1998

The difference in a Y2K applica-
tion failure situation is a matter of
degree, not of kind. The level of daily
faults will reach a point that will over-
whelm the support staff; the contin-
gency backup support, which is de-
signed for isolated crises, will also be
overwhelmed by simultaneous crisis
calls from too many sites. The faults
will come in waves as critical dates are
reached for each application, and the
faults will build to a peak around the
end of 1999 and the beginning of
2000. Faults will start to recede after
March 1, 2000, although new failures
will continue for some time. We are
already seeing a few cases of significant
Y2K faults, although so far none have
been overwhelming.

If a testing project fails to complete
full testing, it does not necessarily fol-
low that the renovated application will
fail in production. In some cases, the
level of undetected faults will be con-
tainable in practice. In other cases,
undetected faults will not be contain-
able, and damage to the business will
result. The business purpose behind

significant testing projects is to take
chance out of the equation and to
provide an insurance policy against
damage. In this sense, the cost of the
testing project can be considered the
premium on an insurance policy.

The complete version of this article
details what is required to achieve risk
minimization using conventional test-
ing methods, how to proceed in a risk
and cost optimization testing project
using conventional testing, and a dis-
cussion of some innovative technical
approaches to introduce economies of
scale by automating the process of
testing. Where applicable, automated
testing can allow a testing project to
move significantly closer to the risk
minimization model within the limits
of what is practical and affordable. ◆

About the Author
DDDDDon Esteson Esteson Esteson Esteson Estes is chief technology officer for
2000 Technologies Corporation, for
whom he has designed and implemented
both a data encapsulation and an auto-
mated testing system. He also works
closely with vendors of limited window-

ing, program encapsu-
lation, and object code
remediation systems.
He has been involved
with COBOL and
database applications
for 25 years and data-
base and mainframe

performance tuning for 10 years. For the
last seven years, he has helped design and
execute projects for the mass modifica-
tion of large bodies of source code, pri-
marily for platform migration, using
state-of-the-art automated source lan-
guage transformation technologies and
automated testing methods. He is a regu-
lar contributor to Peter de Jager’s Year
2000 mail list, where he is known for his
contributions relating to Y2K rapid com-
pliance strategies and automated testing.
Estes is a graduate of Massachusetts Insti-
tute of Technology in physics, with a
postgraduate degree from the University
of Texas in educational psychology.

2000 Technologies Corporation
114 Waltham Street, Suite 19
Lexington, MA 02173
Voice: 781-860-5277, 800-756-8046
E-mail: info@2000technologies.com

inspections unless they start seeing value for the dollars spent.
They need to see the business payback in quantitative terms.
The business value analysis should compare the cost (hours per
major defect) for defects found in inspections with the cost for
each test activity. If you have not been collecting this data for
the test activities, you may need to have developers and testers
estimate the number of hours they believe it takes to find de-
fects during each test activity. ◆

About the Author
JJJJJohn ohn ohn ohn ohn TTTTT. H. H. H. H. Hararararardingdingdingdingding is one of the founding partners of Software
Technology Transition, which provides training and implemen-
tation in the Software Engineering Institute (SEI) Capability
Maturity Model (CMM) and CMM-Based Appraisal for Inter-
nal Process Improvement method and in software inspections,
metrics, and project management. Other work includes the
International Organization for Standardization (ISO) gap analy-
sis, helping organizations develop business and software base-
lines, and action planning for software process improvement.
He was a visiting scientist at the SEI, was the metrics mission
manager for Groupe Bull, and held various technical and mana-
gerial positions in software development with IBM and the
Bank of Boston. He has a master’s degree in business adminis-
tration from Boston University and a bachelor’s degree from
Rensselaer Polytechnic Institute (RPI) and is a member of the

Association for Computing Machinery and the Institute of
Electrical and Electronics Engineers.

Software Technology Transition
60 Elm Street
Andover, MA 01810
Voice and fax: 978-475-5432
E-mail: johntharding@compuserve.com

Recommended Reading
1. Ebenau, R.G. and S.H. Strauss, Software Inspection Process,

McGraw-Hill, New York, 1994.
2. Gilb, T. and Dorothy Graham, Software Inspections, Addison-

Wesley, Reading, Mass., 1993.
3. Weller, E.F., “Lessons From Three Years of Inspection Data,”

IEEE Software, September 1993, pp. 38-45.
4. Weller, E.F., “Using Metrics to Manage Software Projects,” IEEE

Computer, September 1994, pp. 27-33.
5. Grady, Robert B. and Deborah L. Caswell, Software Metrics:

Establishing a Company-Wide Program, Prentice-Hall, Englewood
Cliffs, N.J., 1987.

6. Grady, Robert B., Practical Software Metrics for Project Manage-
ment and Process Improvement, Prentice-Hall, Englewood Cliffs,
N.J., 1992.

7. Ishikawa, Kaoru, Guide to Quality Control, Asian Productivity
Organization, Tokyo, 1976.

8. Burr, Adrian and Mal Owen, Statistical Methods for Software
Quality, International Thomson Computer Press, London, 1996.

HARDING, from page 22

Software Engineering Technology

